У тэорыі імавернасцей прасторай элементарных падзей называецца мноства ўсіх магчымых зыходаў некаторага выпрабавання. Падмноствы называюцца падзеямі. Аднаэлементныя падмноствы называюцца элементарнымі падзеямі (дзеля спрашчэння элементарныя падзеі атаясамліваюцца з элементамі ).

Пустое падмноства называецца немагчымай падзеяй. Падмноства, роўнае самому , называецца верагоднай падзеяй[1]:8.

У выпадку калі прастора элементарных падзей  — канечнае мноства, падзеямі з’яўляюцца ўсе ягоныя падмноствы. У агульным выпадку прастора элементарных падзей можа быць бясконцым мноствам, тады падзеямі з’яўляюцца неабавязкова ўсе ягоныя падмноствы, а толькі тыя, што ўваходзяць у некаторую алгебру або σ-алгебру мностваў[1]:9.

Зноскі

  1. 1 2 Звяровіч Э. І., Радына А. Я. Элементы тэорыі імавернасцей. — Мінск: Беларусь, 2013. — ISBN 978-985-01-1043-5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.