Дзве плоскасці, якія перасякаюцца

Пло́скасць — адно з асноўных паняццяў геаметрыі. Плоскасць — гэта бясконцая паверхня, да якой належаць усе прамыя, што праходзяць праз якія-небудзь два пункты плоскасці. У алгебры плоскасць вызначаецца як двухмерная афінная прастора.

У планіметрыі плоскасць разглядаецца як універсум, да якога належаць усе геаметрычныя фігуры. Стэрэаметрыя разглядае бесканечнае мноства плоскасцей, размешчаных у прасторы.

Ураўненні плоскасці

Плоскасць — алгебраічная паверхня першага парадку: у дэкартавай сістэме каардынат плоскасць можна задаць ураўненнем першай ступені.

  • Агульнае ураўненне (поўнае) плоскасці
дзе і  — канстанты, прычым хоць адзін з лікаў A, B і C не роўны нулю (што раўназначна няроўнасці ); у вектарнай форме:
дзе  — радыус-вектар пункта , вектар перпендыкулярны да плоскасці (нармальны вектар). Накіравальныя косінусы вектары :
Калі адзін з каэфіцыентаў ва ўраўненні плоскасці — нуль, ураўненне называецца няпоўным. Пры плоскасць праходзіць праз пачатак каардынат, пры (або , ) плоскасць паралельная восі (адпаведна або ). Пры (, або ) плоскасць паралельная плоскасці (адпаведна або ).
дзе  — адрэзкі, якія плоскасць адсякае на восях і .
  • Ураўненне плоскасці, якая праходзіць праз пункт перпендыкулярна вектару нармалі :
у вектарнай форме:
  • Ураўненне плоскасці, якая праходзіць праз тры зададзеныя пункты , якія не ляжаць на адной прамой:
дзе абазначае змешаны здабытак вектараў x, y і z, па-іншаму
  • Нармальнае (нармаванае) ураўненне плоскасці
у вектарнай форме:
дзе  — адзінкавы вектар,  — адлегласць плоскасці ад пачатку каардынат. Ураўненне (2) можна атрымаць з ураўнення (1) дамнажэннем на нармавальны множнік
(знакі і супрацьлеглыя).

Спасылкі

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.