Біномнае размеркаванне
Фунцыя імавернасці
Функцыя імавернасці для біномнага размеркавання
Функцыя размеркавання
Функцыя размеркавання для біномнага размеркавання
Абазначэнне
Параметры колькасць выпрабаванняў
імавернасць поспеху кожнага выпрабавання
імавернасць няўдачы выпрабавання
Носьбіт функцыі колькасць паспяховых выпрабаванняў
Функцыя імавернасці
Функцыя размеркавання або (рэгулярызаваная няпоўная бэта-функцыя)
Матэматычнае спадзяванне
Медыяна або
Мода або
Дысперсія
Каэфіцыент асіметрыі
Каэфіцыент эксцэсу
Энтрапія
у шэнанах. Для натаў, лагарыфм мусіць быць натуральным.
Утваральная функцыя момантаў
Характарыстычная функцыя
Імавернасная ўтваральная функцыя
Інфармацыя Фішэра
(для вызначанага )

Біномнае размеркаванне з параметрамі і  — дыскрэтнае размеркаванне імавернасцей, якое апісвае колькасць паспяховых зыходаў пры правядзенні незалежных выпрабаванняў, кожнае з якіх мае два магчымыя зыходы: поспех (з імавернасцю ) і няўдача (з імавернасцю ). Кожнае такое выпрабаванне завецца выпрабаваннем Бэрнулі, а шэраг зыходаў — працэсам Бэрнулі. Для аднаго выпрабавання () біномнае размеркаванне адпавядае размеркаванню Бэрнулі[1]:81. Біномнае размеркаванне ляжыць у падмурку біномнага крытэрыю статыстычнай значнасці[2].

Біномнае размеркаванне часта выкарыстоўваецца для мадэлявання колькасці «паспяховых» элементаў у выбарцы з вяртаннем памерам з генеральнай сукупнасці памерам . Калі робіцца адбор без вяртання, выпрабаванні не незалежныя, і мадэляваць такую сітуацыю трэба з дапамогай гіпергеаметрычнага размеркавання. Аднак калі значна большае за , біномнае размеркаванне добра яго набліжае і таму часта выкарыстоўваецца.

Азначэнне

Функцыя імавернасці

Выпадковая велічыня , якая мая біномнае размеркаванне з параметрамі і запісваецца як Імавернасць назірання поспехаў у выпрабаваннях Бэрнулі задаецца функцыяй імавернасці:

для , дзе

біномны каэфіцыент, ад якога і паходзіць імя размеркавання. Формула тлумачыцца наступным чынам: імавернасць назірання поспехаў роўная , а няўдач адбываюцца з імавернасцю . Пры гэтым паспяховымі могуць быць якія-кольвек з шэрагу выпрабаванняў, і існуе спалучэнняў з выпрабаванняў па .

Функцыя размеркавання

Функцыя размеркавання для мае выгляд:

дзе  — цэлая частка ад .

Прыклад

Няхай манетка мае імавернасць 0.3 выпасці рэшкай. Імавернасць пабачыць 4 рэшкі пры яе шасціразовым падкіданні роўная

Характарыстыкі

Няхай Тады можна запісаць дзе кожная велічыня мае размеркаванне Бэрнулі з параметрам і ўсе незалежныя адна ад адной. Ведаючы характарыстыкі размеркавання Бэрнулі і , можна знайсці матэматычнае спадзяванне і дысперсію біномнага размеркавання[1]:118:

Сувязь з іншымі размеркаваннямі

Размеркаванне Бэрнулі

Размеркаванне Бэрнулі — асобны выпадак біномнага размеркавання для [1]:81. Іншымі словамі, велічыня мае такое ж размеркаванне, як і велічыня

Паліномнае размеркаванне

Паліномнае размеркаванне — многавымернае абагульненне біномнага. Яно дазваляе мадэляваць сітуацыі, калі магчымых зыходаў выпрабавання больш за два.

Зноскі

  1. 1 2 3 Звяровіч Э. І., Радына А. Я. Элементы тэорыі імавернасцей. — Мінск: Беларусь, 2013. — С. 69. — ISBN 978-985-01-1043-5.
  2. Westland, J. Christopher (2020). Audit Analytics: Data Science for the Accounting Profession. Chicago, IL, USA: Springer. p. 53. ISBN 978-3-030-49091-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.