معضلات لاندو

خلال المؤتمر الدولي للرياضيات لعام 1912, وضع إدموند لاندو أربع معضلات أساسية حول الأعداد الأولية.[1][2]وصفها في كلمته بأنها "عصية على الحل بالرياضيات المعروفة لنا الآن" وتعرف الآن باسم معضلات لاندو. هذه المعضلات هي:

  1. حدسية جولدباخ : هل يمكن كتابة كل عدد صحيح أكبر من 2 كمجموع عددين أوليين؟
  2. حدسية العددان الأوليان التوأم: هل هناك عدد لانهائي من الأعداد الأولية p بحيث أن p+2 يكون عدد أولي أيضا؟
  3. حدسية ليجاندر [الإنجليزية] هل هناك دائمًا على الأقل عدد أولي واحد بين المربعات الكاملة المتتالية؟
  4. هل هناك عدد لانهائي من الأعداد الأولية p بحيث أن p-1 يكون مربع كامل؟ بصيغة أخرى: هل هناك عدد لا نهائي من الأعداد الأولية يمكن حسابها بالصيغة التالية n 2+
صورة لعالم الرياضيات إدموند لانداو

حتى الآن (2023) لاتزال هذه المسائل غير محلولة.

مراجع

وصلات خارجية

  • أيقونة بوابةبوابة رياضيات
  • أيقونة بوابةبوابة نظرية الأعداد
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.