متسلسلة ماكلورين

إذا كانت في متسلسلة تايلور، يمكن الحصول على متسلسلة أبسط للنشر بقرب الصفر وهي متسلسلة ماكلورين. سميت السلسلة على اسم عالم الرياضيات الإسكتلندي كولين ماكلورين.[1]

تعريف

إذا كانت الدالة الرياضية قابلة للاشتقاق مرة في النقطة فإنه يمكن كتابتها كما يلي:[2]

إذا عوضت بلانهاية فإنه يُحصل على متسلسلة لا منتهية هي بذاتها الدالة أي أن الجزء يصير صفرا والمتسلسلة تساوي الدالة في كل النقاط :[2][3]

أو

إذا كانت في هذه المتسلسلة يمكن الحصول على متسلسلة أبسط للنشر بقرب الصفر وهي متسلسلة ماكلورين:[4]

أمثلة

وصلات داخلية

مراجع

  1. I. Bronstein, K. Semendjajew et al.: Taschenbuch der Mathematik. Verlag Harri Deutsch, Frankfurt am Main 2005, ISBN 3-8171-2006-0, S. 434.
  2. Rudin، Walter (1980)، Real and Complex Analysis، New Dehli: McGraw-Hill، ص. 418, Exercise 13، ISBN:0-07-099557-5
  3. Hille، Einar؛ Phillips، Ralph S. (1957)، Functional analysis and semi-groups، AMS Colloquium Publications، American Mathematical Society، ج. 31، ص. 300–327.
  4. Weisstein, Eric W. "Maclaurin Series". mathworld.wolfram.com (بالإنجليزية). Archived from the original on 2020-11-30. Retrieved 2020-11-30.
  • أيقونة بوابةبوابة تحليل رياضي
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.