مبرهنة ويلسون

في الرياضيات، تنص مبرهنة ويلسون (بالإنجليزية: Wilson's theorem)‏ على أن عددا صحيحا طبيعيا ما n > 1 هو عدد أولي إذا وفقط إذا كان جداء كل الاعداد الصحيحة الموجبة الأصغر قطعا من n أصغر بواحدٍ من مضاعفٍ ما ل n. أي أنه إذا توفر مايلي:

و بتعبير آخر، إذا وفقط إذا كان مضاعفا ل n.

التاريخ

توصل ابن الهيثم لهاته المبرهنة في العصور الوسطى،[1] لكنها نسبت إلى جون ويلسون تلميذ الرياضياتي الإنجليزي إدوارد ويرينغ الذي صاغها في القرن الثامن عشر. أعلن ويرينغ تلك المبرهنة في عام 1770، على الرغم من أنه لا هو ولا ويلسون أمكنهم إثبات ذلك. استطاع جوزيف لاغرانج في عام 1771، أن يقدم أول إثبات للمبرهنة.[2] هناك أدلة على أن ليبنيز كان على علم أيضًا بتلك المبرهنة قبل ذلك بنحو قرن، لكنه لم ينشر ذلك.

مثال

يبين الجدول التالي في عموده الأول قيم n من 2 حتي 30، وقيم في عموده الثاني. أما العمود الثالث فيحتوي على الباقي عند قسمة على n. لُونت السطور حيث n عدد أولي باللون الوردي بينما لُونت السطور حيث n غير أولي باللون الأخضر.

جدول البواقي بترديد n
211
322
462
5244
61200
77206
850400
9403200
103628800
11362880010
12399168000
1347900160012
1462270208000
15871782912000
1613076743680000
172092278988800016
183556874280960000
19640237370572800018
201216451004088320000
2124329020081766400000
22510909421717094400000
23112400072777760768000022
24258520167388849766400000
256204484017332394393600000
26155112100433309859840000000
274032914611266056355840000000
28108888694504183521607680000000
2930488834461171386050150400000028
3088417619937397019545436160000000

براهين

حالة العدد غير الأولي

إذا كان n عدداً غير أولي (مركب) فهو يقبل القسمة على عدد أولي q، حيث n-2 ≥q≥ 2 . إذا كان !(n − 1) يطابق 1- (mod n) فإنه سيطابق 1-(mod q). ولكن (n  1)!  0 (mod q) .

حالة العدد الأولي

النتيجة واضحة عندما p = 2 ، ولذلك سنفرض أن p عدد أولي فردي، p ≥ 3.
بما أنه يوجد لكل باقي (mod p) معاكس ضربي وحيد (mod p) غير صفري a−1. من مبرهنة لاغرانج تقتضي أن القيم الوحيدة لa التي تحقق أن (aa−1 (mod p هي (a ≡ ±1 (mod p. بالتالي، استثناء ±1 ، يمكن تقسيم عوامل !(p − 1) إلى أزواج،[3] بحيث يكون ضرب كل زوجين ≡ 1 (mod p).
وبذلك تثبت المبرهنة.

برهان لاغرانج

استعمل لاغرانج الحدودية

حيث نشرها وحدد معاملاتها باستعمال الخاصية

ثم أثبت إذن، أنه عندما يكون n أوليا، فإن جميع المعاملات - باستثناء الأول الذي يساوي 1 و الأخير الذي يساوي !(n-1) - مضاعفات ل n.

ثم، باستعمال نفس المتساوية دائما، لاحظ أن آخر معامل مضروبا فيn–1 يساوي مجموع كل المعاملات الأخرى واستنتج أن n – 1)! + 1) مضاعف ل n.

تطبيقات

هذه المبرهنة لا تستعمل من أجل تحديد أولية عدد ما لأنه سرعان ما يصير !(n-1) كبيرا جدا بمجرد ما يصير n كبيراً نسبياً.

بواقي تربيعية

باستعمال مبرهنة ويلسون، لكل عدد أولي فردي p = 2m + 1، نستطيع ترتيب الطرف الأيسر ل

للحصول على المتساوية

هذا يصبح

أو

تعميمات

تعميم غاوس

أثبت غاوس أن

حيث p عدد فردي و عدد صحيح موجب.

المراجع

  1. O'Connor، John J.؛ Robertson، Edmund F.، "Abu Ali al-Hasan ibn al-Haytham"، تاريخ ماكتوتور لأرشيف الرياضيات
  2. Joseph Louis Lagrange, "Demonstration d'un théorème nouveau concernant les nombres premiers," Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, vol. 2, pages 125–137 (1771). (ملحوظة: اثبت لاجرانج مبرهنة ويلسون عام 1773. عندما نشرت أكاديمية برلين مذكراتها Mémoires لعام 1771 أخيرًا في عام 1773 ، كان اثبات لاجرانج موجودًا في مذكرات عام 1771. طالع هامش رقم 2 على صفحة 499 من: Leonard Euler; A. P. Juskevic and R. Taton (ed.s), Correspondence de Leonard Euler avec A. C. Clairaut, J. d'Alembert et J. L. Lagrange (Cambridge, Massachusetts: Birkhäuser, 1980) [in French].)
  3. When n = 3, the only القواسم الوحيدة هي ±1
  • Ore، Oystein (1988). Number Theory and its History. Dover. ص. 259–271. ISBN:0-486-65620-9. مؤرشف من الأصل في 2021-10-26.{{استشهاد بكتاب}}: صيانة الاستشهاد: التاريخ والسنة (link)

وصلات خارجية

  • أيقونة بوابةبوابة رياضيات
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.