مبرهنة كلفن-ستوكس

مبرهنة كلفن-ستوكس،[1][2] سميت نسبةً للرياضياتيين لورد كلفن وجورج ستوكس، معروفة أيضًا باسم مبرهنة ستوكس،[ملاحظة 1][3] أو المبرهنة الأساسية للدوران[ملاحظة 2] أو ببساطة مبرهنة الدوران،[ملاحظة 3][4] هي مبرهنة في حساب المتجهات على . بالنظر إلى حقل متجهي، تربط المبرهنة تكامل دوران الحقل المتجهي على بعض السطح، بالتكامل الخطي للحقل المتجهي حول حدود السطح.

رسم توضيحي لمبرهنة كلفن-ستوكس، مع السطح Σ, وحدوده ∂Σ والمتجه الناظمي n.

إذا كان الحقل المتجهي معرفة في منطقة ذات سطح أملس موجه وله مشتقات جزئية مستمرة من المرتبة الأولى، فإن:

حيث هي حدود المنطقة ذات سطح أملس .

يمكن ذكر مبرهنة كلفن-ستوكس الكلاسيكية المذكورة أعلاه في جملة واحدة: التكامل الخطي لحقل متجه على عُرْوة (Loop) يساوي تدفق دورانه عبر السطح المغلق.

مبرهنة كلفن-ستوكس هي حالة خاصة لمبرهنة ستوكس المعممة.[5][6] على وجه الخصوص، يمكن اعتبار حقل المتجه على أحادي الصورة وفي هذه الحالة يكون دورانه هو مشتقه الخارجي، ثنائي الصورة.

هوامش

  1. بالإنجليزية: Stokes' theorem
  2. بالإنجليزية: Fundamental theorem for curls
  3. بالإنجليزية: Curl theorem

مراجع

  1. Nagayoshi Iwahori, et al.:"Bi-Bun-Seki-Bun-Gaku" Sho-Ka-Bou(jp) 1983/12 (ردمك 978-4-7853-1039-4) (باليابانية) نسخة محفوظة 2020-07-18 على موقع واي باك مشين.
  2. Atsuo Fujimoto;"Vector-Kai-Seki Gendai su-gaku rekucha zu. C(1)" Bai-Fu-Kan(jp)(1979/01) (ردمك 978-4563004415) (باليابانية)
  3. Stewart، James (2012). Calculus - Early Transcendentals (ط. 7th). Brooks/Cole Cengage Learning. ص. 1122. ISBN:978-0-538-49790-9.
  4. Griffiths، David (2013). Introduction to Electrodynamics. Pearson. ص. 34. ISBN:978-0-321-85656-2.
  5. Conlon، Lawrence (2008). Differentiable Manifolds. Modern Birkhauser Classics. Boston: Birkhaeuser.
  6. Lee، John M. (2002). Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer. ج. 218.
  • أيقونة بوابةبوابة الفيزياء
  • أيقونة بوابةبوابة تحليل رياضي
  • أيقونة بوابةبوابة رياضيات
  • أيقونة بوابةبوابة هندسة رياضية
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.