كارل بيرسون

كارل بيرسون (بالإنجليزية: Karl Pearson)‏، حائز على زمالة الجمعية الملكية، زمالة الجمعية الملكية في إدنبرة (27 مارس 1857 - 27 أبريل 1936)،[6][7] عالم رياضيات إنجليزي وخبير إحصاء حيوي. كان له الفضل في تأسيس نظام الإحصاء الرياضي.[8][9] أسس أول قسم للإحصاءات الجامعية في العالم في كلية لندن الجامعية عام 1911، وساهم بشكل كبير في مجال القياس الحيوي والأرصاد الجوية. كان بيرسون أيضًا مؤيدًا للداروينية الاجتماعية وعلم تحسين النسل.[10] كان بيرسون ربيبًا للسير فرانسيس غالتون وكاتبًا لسيرته الذاتية. أكمل عمل كل من ويليام كينغدون كليفورد، الحس السليم للعلوم الدقيقة (1885)، وإسحاق تودهونتر، تاريخ نظرية المرونة، المجلد.1 (1886–1893) والمجلد.2 (1893)، وحررهم بعد وفاتهما.

كارل بيرسون
(بالإنجليزية: Karl Pearson)‏ 
 

معلومات شخصية
الميلاد 27 مارس 1857 [1][2][3][4] 
لندن[5] 
الوفاة 27 أبريل 1936 (79 سنة) [5][1][2][3][4] 
مواطنة المملكة المتحدة 
عضو في الجمعية الملكية،  والأكاديمية الأمريكية للفنون والعلوم 
الحياة العملية
المدرسة الأم كلية الملك
كلية لندن الجامعية
كلية كينجز لندن
جامعة هايدلبرغ
جامعة كامبريدج 
مشرف الدكتوراه فرانسيس غالتون 
تعلم لدى فرانسيس غالتون 
طلاب الدكتوراه فيليب هال،  وجورج أودني يول،  وجورج أودني يول 
التلامذة المشهورون نيكولاس جورجيسك روغين 
المهنة رياضياتي،  ومؤرخ الرياضيات،  وعالم إحصاء،  ومؤرخ،  وفيلسوف،  وكاتب سير،  وعالم نفس 
اللغات الإنجليزية 
مجال العمل إحصاء رياضي،  وإحصاء،  وعلم الأحياء 
موظف في كلية لندن الجامعية،  وكلية غريشام،  وكلية كينجز لندن 
الجوائز

المساهمات في القياسات الحيوية

كان لكارل بيرسون أهمية في تأسيس مدرسة القياسات الحيوية، والتي كانت نظرية تنافسية لوصف التطور والتوريث السكاني في مطلع القرن العشرين. جعلت سلسلته المكونة من ثمانية عشر بحثًا بعنوان «مساهمات رياضية في نظرية التطور» منه مؤسسًا لمدرسة القياس الحيوي للتوريث. خصص بيرسون عمليًا الكثير من الوقت ما بين عامي 1893-1904 لتطوير التقنيات الإحصائية للقياس الحيوي.[11] تشمل هذه التقنيات، التي تستخدم على نطاق واسع اليوم للتحليل الإحصائي، اختبار مربع كاي والانحراف المعياري ومعامل الارتباط وتحليل الانحدار. نص قانون بيرسون لوراثة الأجداد على أن البلاسما الجرثومية تتكون من عناصر وراثية موروثة من الوالدين وكذلك من أسلاف أبعد، تختلف نسبتها باختلاف السمات.[12]

كان كارل بيرسون من أتباع غالتون، وعلى الرغم من اختلاف الاثنين في بعض النواحي، إلا أن بيرسون استخدم الكثير من مفاهيم فرانسيس غالتون الإحصائية في صياغته لمدرسة القياس الحيوي للتوريث، مثل قانون الانحدار. لم تركز مدرسة القياس الحيوي- على عكس المندلية- على توفير آلية للتوريث، بل على تقديم وصف رياضي لم يكن سببيًا في الطبيعة للتوريث. اقترح غالتون نظرية متقطعة للتطور، تفيد أن الأنواع يجب أن تتغير من خلال القفزات الكبيرة بدلًا من التغييرات الصغيرة التي تراكمت بمرور الوقت، بينما أشار بيرسون إلى عيوب في حجة غالتون واستخدم بالفعل أفكار غالتون لتعزيز نظرية مستمرة للتطور، في حين فضل المندليون نظرية التطور المتقطعة. ركز غالتون في المقام الأول على تطبيق الأساليب الإحصائية لدراسة الوراثة، بينما وسّع بيرسون وزميله ويلدون المنطق الإحصائي إلى مجالات التوريث والتباين والارتباط والانتقاء الطبيعي والجنسي.[13]

لم يكن المقصود من نظرية التطور- بالنسبة لبيرسون- تحديد آلية بيولوجية تشرح أنماط التوريث، في حين افترضت النظرية المندلية أن الجين هو آلية للتوريث. انتقد بيرسون باتسون وعلماء الأحياء الآخرين لفشلهم في اعتماد تقنيات القياس الحيوي في دراستهم للتطور.[14]

انتقد بيرسون علماء الأحياء الذين لم يركزوا على الصحة الإحصائية لنظرياتهم، مشيرًا إلى أنه «قبل أن نتمكن من قبول [أي سبب للتغيير التدريجي] كعامل، لا يجب أن نكون قد أظهرنا مقبوليته فحسب، بل أظهرنا قدر الإمكان قدرته الكمية».[15] سلّم علماء الأحياء بـ «تكهنات ميتافيزيقية تقريبًا بما يخص أسباب الوراثة»، والتي حلت محل عملية جمع البيانات التجريبية التي قد تسمح للعلماء في الواقع بتقليص النظريات المحتملة.[16]

كانت قوانين الطبيعة بالنسبة لبيرسون مفيدة في الحصول على تنبؤات دقيقة، ووصف الاتجاهات في البيانات المرصودة بإيجاز.[13] التسبيب هو تجربة «حدوث تسلسل معين وتكراره في الماضي»،[15] وبالتالي لم يكن تحديد آلية معينة لعلم الوراثة سعيًا جديرًا لعلماء الأحياء، الذين تعين عليهم بدلًا من ذلك، التركيز على الأوصاف الرياضية للبيانات التجريبية.

أدى ذلك جزئيًا إلى نقاش حاد بين علماء القياس الحيوي والمندليين، بمن فيهم باتيسون. أسس بيرسون وويلدون مجلة بيوميتريكا في عام 1902،[17] بعد أن رفض باتيسون إحدى مخطوطات بيرسون التي وصفت نظرية جديدة للتباين في ذرية ما، أو تنميط مِثليّ. اعتبرت التقنيات التي طورها بيرسون وعلماء القياس الحيوي في ذلك الوقت بالغة الأهمية لدراسات علم الأحياء والتطور اليوم، على الرغم من أن نهج القياس الحيوي المتبع في التوريث خسر في نهاية المطاف أمام المنهج المندلي.

مساهماته في الإحصاء

تمثل أعمال بيرسون قاعدة بُنيت عليها مجموعة من الطرق الكلاسيكية المستعملة في الإحصاء حاليا. من الأمثلة عن مساهماته في الإحصاء ما يلي:

انظر أيضا

مراجع

  1. تاريخ ماكتوتور لأرشيف الرياضيات، QID:Q547473
  2. Brockhaus Enzyklopädie | Karl Pearson (بالألمانية), QID:Q237227
  3. Gran Enciclopèdia Catalana | Karl Pearson (بالكتالونية), Grup Enciclopèdia, QID:Q2664168
  4. Dalibor Brozović; Tomislav Ladan (1999). Hrvatska enciklopedija | Karl Pearson (بالكرواتية). Leksikografski zavod Miroslav Krleža. ISBN:978-953-6036-31-8. OCLC:247866724. OL:120005M. QID:Q1789619.
  5. А. М. Прохоров, ed. (1969), Большая советская энциклопедия: [в 30 т.] (بالروسية) (3rd ed.), Москва: Большая российская энциклопедия, Пирсон Карл, OCLC:14476314, QID:Q17378135
  6. Yule، G. U.؛ Filon، L. N. G. (1936). "Karl Pearson. 1857–1936". مذكرات السير الذاتية لزملاء الجمعية الملكية. ج. 2 ع. 5: 72–110. DOI:10.1098/rsbm.1936.0007. JSTOR:769130.
  7. "Library and Archive catalogue". Sackler Digital Archive. Royal Society. مؤرشف من الأصل في 25 أكتوبر 2011. اطلع عليه بتاريخ 1 يوليو 2011.
  8. "Karl Pearson sesquicentenary conference". Royal Statistical Society. 3 مارس 2007. مؤرشف من الأصل في 2020-09-06. اطلع عليه بتاريخ 2008-07-25.
  9. "[...] the founder of modern statistics, Karl Pearson." – Bronowski, Jacob (1978). The Common Sense of Science, Harvard University Press, p. 128.
  10. "The Concept of Heredity in the History of Western Culture: Part One," The Mankind Quarterly, Vol. XXXV, No. 3, p. 237. نسخة محفوظة 29 يونيو 2017 على موقع واي باك مشين.
  11. Farrall، Lyndsay A. (أغسطس 1975). "Controversy and Conflict in Science: A Case Study The English Biometric School and Mendel's Laws". Social Studies of Science. ج. 5 ع. 3: 269–301. DOI:10.1177/030631277500500302. PMID:11610080.
  12. Pearson، Karl (1897). "Mathematical Contributions to the Theory of Evolution. On the Law of Ancestral Heredity". Proceedings of the Royal Society of London. ج. 62 ع. 379–387: 386–412. Bibcode:1897RSPS...62..386P. DOI:10.1098/rspl.1897.0128. JSTOR:115747. مؤرشف من الأصل في 2020-08-03.
  13. Pence، Charles H. (2015). "The early history of chance in evolution". Studies in History and Philosophy of Science. ج. 50: 48–58. CiteSeerX:10.1.1.682.4758. DOI:10.1016/j.shpsa.2014.09.006. PMID:26466463.
  14. Morrison، Margaret (1 مارس 2002). "Modelling Populations: Pearson and Fisher on Mendelism and Biometry". The British Journal for the Philosophy of Science. ج. 53: 39–68. DOI:10.1093/bjps/53.1.39.
  15. Pearson، Karl (1892). The grammar of science. The contemporary science series. London : New York: Walter Scott ; Charles Scribner's Sons. مؤرشف من الأصل في 2020-09-06.
  16. Pearson, Karl (1 Jan 1896). "Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia". Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (بالإنجليزية). 187: 253–318. Bibcode:1896RSPTA.187..253P. DOI:10.1098/rsta.1896.0007. ISSN:1364-503X.
  17. Gillham، Nicholas (9 أغسطس 2013). "The Battle Between the Biometricians and the Mendelians: How Sir Francis Galton Caused his Disciples to Reach Conflicting Conclusions About the Hereditary Mechanism". Science & Education. ج. 24 ع. 1–2: 61–75. Bibcode:2015Sc&Ed..24...61G. DOI:10.1007/s11191-013-9642-1.

وصلات خارجية

  • أيقونة بوابةبوابة أعلام
  • أيقونة بوابةبوابة المملكة المتحدة
  • أيقونة بوابةبوابة رياضيات
  • أيقونة بوابةبوابة فلسفة
  • أيقونة بوابةبوابة فلسفة العلوم
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.