قوانين دي مورغان

تستخدم قوانين دي مورجان في قواعد المنطق في وصف نتيجة عكس عمليتي الضرب المنطقي(و) and و الجمع المنطقي(أو) or

NOT (P OR Q) = (NOT P) AND (NOT Q)
NOT (P AND Q) = (NOT P) OR (NOT Q)

و عن طريق الإشارات

حيث أن:

  • علامة تعبر عن النفي المنطقي(لا)(NOT)
  • علامة تعبر عن الضرب المنطقي (و)(AND)
  • علامة تعبر عن الجمع المنطقي(أو)(OR)
  • علامة fiuoio متساويان منطقيا (إذا و فقط إذا)

وفي قوانيين الجبر البولييني

The intersection of A and B

الاتحاد والتقاطع يتبدلان تحت النفي.[1][2][3]

حيث أن:

  • هي عكس A
  • تعبير يدل علي التقاطع(AND)
  • تعبير يدل علي الاتحاد(OR)

الإثبات الرياضي لنظرية دي مورجان

إذا وفقط إذا و .

أو

أو

لذلك

أو

أو

لذلك

و لذلك

يمكن إثباتها بنفس الطريقة.

مراجع

  • أيقونة بوابةبوابة رياضيات
  • أيقونة بوابةبوابة علم الحاسوب
  • أيقونة بوابةبوابة منطق
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.