صيغة كوشي التكاملية
في التحليل المركب، تنص صيغة كوشي التكاملية (بالإنجليزية: Cauchy's integral formula) على أنه يمكن تحديد قيمة التابع التحليلي، المعرف على قرص، في أي نقطة داخل القرص بواسطة قيم هذا التابع على محيط هذا القرص، أي.[1][2]
جزء من سلسلة مقالات حول |
تحليل مركب |
---|
![]() |
بوابة رياضيات |
المبرهنة
ليكن U مجموعة مفتوحة من المستوى العقدي C وليكن القرص المنغلق D المعرف كما يلي:
ضمن المجموعة U بشكل كامل.
ومن هذه الصيغة يمكن استنتاج قابلية هذا التابع للمفاضلة بعدد لا نهائي من المرات
مثال
![](../I/ComplexResiduesExample.png.webp)
المساحة (أو السطح) الممثلة للجزء الحقيقي للدالة g(z) = z2 / (z2 + 2z + 2) and its singularities, with the contours الموصوفة في النص.
لتكن الدالة
- ,
انظر أيضا
مراجع
- "معلومات عن صيغة كوشي التكاملية على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 2022-05-23.
- "معلومات عن صيغة كوشي التكاملية على موقع ncatlab.org". ncatlab.org. مؤرشف من integral formula الأصل في 2023-05-05.
{{استشهاد ويب}}
: تحقق من قيمة|مسار=
(مساعدة)[وصلة مكسورة]
- بوابة تحليل رياضي
- بوابة رياضيات
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.