زمرة دورية
في نظرية الزمر، يُقال عن زمرة أنها دوريّة[1] (بالإنجليزية: Cyclic group) إذا كان من الممكن توليدها عن طريق عنصر وحيد، فإذا كانت الزمرة تحوي عنصراً a (ويسمى مولد الزمرة) وكانت العملية المعرفة عليها هي الجداء، فإن أي عنصر من هذه الزمرة يمكن كتابته قوةً للعنصر a، أما إذا كانت العملية المعرفة هي الجمع فإن جميع العناصر يجب أن تكون من مضاعفات العنصر a.[2]
البنية الجبرية ← نظرية الزمر نظرية الزمر |
---|
تعريف
خصائص
تكون زمرة G ما دائرية إذا وجد عنصر g من G حيث كل عناصر الزمرة G تُكتب على شكل gn حيث n عدد صحيح.
تمثيل الزمر الدائرية
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
انظر أيضا
مراجع
- موفق دعبول؛ بشير قابيل؛ مروان البواب؛ خضر الأحمد (2018)، معجم مصطلحات الرياضيات (بالعربية والإنجليزية)، دمشق: مجمع اللغة العربية بدمشق، ص. 155، OCLC:1369254291، QID:Q108593221
- p. 126: "If G has two ends, the explicit structure of G is well known: G is an extension of a finite group by either the infinite cyclic group or the infinite dihedral group." نسخة محفوظة 26 مارس 2015 على موقع واي باك مشين.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.