تسلسل زمني لحساب ط
الجدول أسفله يبين التسلسل الزمني لحساب قيمة العدد باي.
قبل 1400
تاريخ | من | الطريقة | قيمة باي | عدد الرتب العشرية (الأرقام القياسية مضغوطة) |
---|---|---|---|---|
2000 ق.م | المصريون القدماء[1] | 4 × (8 / 9)2 | 3.16045... | 1 |
2000 ق.م | البابليون القدماء[1] | 3 + 1 / 8 | 3.125 | 1 |
1200 ق.م | الصين[1] | 3 | 0 | |
550 ق.م | الكتاب المقدس[1] | "وعمل البحر مسبوكا عشر أذرع من شفته إلى شفته وكان مدورا مستديرا ارتفاعه خمسة أذرع وخيط ثلاثون ذراعا يحيط به بدائره " | 3 | 0 |
434 ق.م | أناكساغوراس حاول تربيع الدائرة[2] | الفرجار والمسطرة | أناكساغوراس لم يعط أي حل | 0 |
350 ق.م | سولبا سوترا[3][4] | (6 / (2 + √2))2 | 3.088311 … | 0 |
حوالي 250 ق.م | أرخميدس[1] | 223 / 71 < π < 22 / 7 | 3.140845... < π < 3.142857... 3.1418 (ave.) | 3 |
15 ق.م | فيتروفيو[3] | 25 / 8 | 3.125 | 1 |
5 | ليو شين[3] | الطريقة بالتحديد ليست معروفة | 3.1457 | 2 |
130 | زانغ هنغ (كتاب هان اللاحق)[1] | √10 = 3.162277... 730/232 |
3.146551... | 2 |
150 | بطليموس[1] | 377 / 120 | 3.141666... | 3 |
250 | وانغ فان[1] | 142 / 45 | 3.155555... | 1 |
263 | ليو هوي[1] | 3.141024 < π < 3.142074 3927 / 1250 |
3.14159 | 5 |
400 | هي شينغتيان[3] | 111035 / 35329 | 3.142885... | 2 |
480 | زو تشونغزي[1] | 3.1415926 < π < 3.1415927 Zu's ratio 355 / 113 |
3.1415926 | 7 |
499 | أريابهاتا[1] | 62832 / 20000 | 3.1416 | 3 |
640 | براهماغوبتا[1] | √10 | 3.162277... | 1 |
800 | الخوارزمي[1] | 3.1416 | 3 | |
1150 | باسكارا الثاني[3] | 3927 / 1250 and 754 / 240 | 3.1416 | 3 |
1220 | فيبوناتشي[1] | 3.141818 | 3 | |
1320 | زاو يوقين[3] | 3.1415926 | 7 |
منذ 1400
التاريخ | من | ملحوظة | عدد الرتب العشرية (الأرقام القياسية مضغوطة) |
---|---|---|---|
All records from 1400 onwards are given as the number of correct decimal places. | |||
1400 | مادهافا السنغماري | Probably discovered the infinite متسلسلة قوى expansion of π, المعروفة حاليا باسم صيغة لايبنتس ل π[5] |
10 |
1424 | جمشيد الكاشي[6] | 16 | |
1573 | فالنتينوس أوثو | 355/113 | 6 |
1579 | فرانسكوا فييت[7] | 9 | |
1593 | أدريان فان رومن[8] | 15 | |
1596 | لودولف فان ساولن | 20 | |
1615 | 32 | ||
1621 | ويلبرورد سنيليوس | تلميذ فان ساولن | 35 |
1630 | كريستوف غرينبرغر[9][10] | 38 | |
1665 | إسحاق نيوتن[1] | 16 | |
1681 | سيكي تاكاكازو[11] | 11 16 | |
1699 | أبراهام شارب[1] | حسب باي إلى 72 رتبة عشرية، لكن لم تكن كلها صحيحة | 71 |
1706 | جون ماكن[1] | 100 | |
1706 | وليام جونز | أول من استخدم الحرف الإغريقي π | |
1719 | طوماس فانتي دو لاغني[1] | حسب 127 رتبة عشرية، لكن ليست كلها صحيحة | 112 |
1722 | توشيكيو كاماتا | 24 | |
1722 | تاكيبي كينكو | 41 | |
1739 | Yoshisuke Matsunaga | 51 | |
1748 | ليونهارد أويلر | استخدم الحرف 'π' في كتابه Introductio in Analysin Infinitorum وضمن بذلك شهرته. | |
1761 | يوهان لامبرت | برهن على أن π عدد لاجذري | |
1775 | أويلر | قال أن العدد π ربما يكون عددا متساميا | |
1789 | يوري فيجا | حسب 143 رتبة عشرية، لكنها لم تكن كلها صحيحة | 126 |
1794 | يوري فيجا[1] | حسب 140 رتبة عشرية، لكنها لم تكن كلها صحيحة | 136 |
1794 | أدريان ماري ليجاندر | برهن على أن ²π عدد لاجذري | |
أواخر القرن الثامن عشر | مخطوط يُجهل كاتبه | Turns up at Radcliffe Library, in Oxford, England, discovered by F. X. von Zach, giving the value of pi to 154 digits, 152 of which were correct | 152 |
1824 | وليام رذرفورد[1] | حسب 208 رتبة عشرية، لكنها لم تكن كلها صحيحة | 152 |
1844 | زكرياء دايز وسترانيتزكي[1] | حسب 205 رتبة عشرية، لكنها لم تكن كلها صحيحة | 200 |
1847 | طوماس كلوسن[1] | حسب 250 رتبة عشرية، لكنها لم تكن كلها صحيحة | 248 |
1853 | ليهمان[1] | 261 | |
1853 | رذرفورد[1] | 440 | |
1874 | وليام شانكس[1] | استغرق 15 سنة لحساب 707 رتبة عشرية، لكنها لم تكن كلها صحيحة | 527 |
1882 | فرديناند فون ليندمان | برهن على أن π عدد متسامي (مبرهنة ليندمان-ويرستراس) | |
1897 | ولاية إنديانا | كلنت على وشك تحديد قيمة 3.2 للعدد π[12] | 1 |
1910 | سرينفاسا أينجار رامانجن | وجد عدة متسلسلات لحساب π والتي تعطي 8 رتب جديدة في كل حد. | |
1946 | D. F. Ferguson | حاسوب مكتب | 620 |
1947 | إيفان نيفن | أعطى برهانا بسيطا على أن π عدد لاجذري | |
يناير 1947 | D. F. Ferguson | حاسوب مكتب | 710 |
September 1947 | D. F. Ferguson | حاسوب مكتب | 808 |
1949 | D. F. Ferguson وجون رنش | حاسوب مكتب | 1,120 |
عصر الحواسيب الإلكترونية (منذ 1949)
التاريخ | من | كيف ؟ | الوقت | عدد الرتب العشرية (الأرقام القياسية مضغوطة) |
---|---|---|---|---|
All records from 1949 onwards were calculated with electronic computers. | ||||
1949 | جون رنش, and L. R. Smith | Were the first to use an electronic computer (the إينياك) to calculate π (also attributed to Reitwiesner et al.) [13] | 70 ساعة | 2,037 |
1953 | كورت ماهلر | Showed that π is not a عدد ليوفيل | ||
1954 | S. C. Nicholson & J. Jeenel | Using the NORC [14] | 13 دقيقة | 3,093 |
1957 | George E. Felton | فيرانتي Pegasus computer (London), calculated 10,021 digits, but not all were correct [15] | 7,480 | |
يناير 1958 | Francois Genuys | IBM 704 [16] | 1.7 ساعة | 10,000 |
May 1958 | George E. Felton | Pegasus computer (London) | 33 ساعة | 10,021 |
1959 | Francois Genuys | IBM 704 (Paris)[17] | 4.3 ساعة | 16,167 |
1961 | Daniel Shanks and جون رنش | IBM 7090 (New York)[18] | 8.7 ساعة | 100,265 |
1961 | J.M. Gerard | IBM 7090 (London) | 39 دقيقة | 20,000 |
1966 | Jean Guilloud and J. Filliatre | IBM 7030 (Paris) | 28 ساعة [إخفاق التحقق] | 250,000 |
1967 | Jean Guilloud and M. Dichampt | سي دي سي 6600 (Paris) | 28 ساعة | 500,000 |
1973 | Jean Guilloud and Martin Bouyer | CDC 7600 | 23.3 ساعة | 1,001,250 |
1981 | Kazunori Miyoshi and ياسوماسا كانادا | FACOM M-200 | 2,000,036 | |
1981 | Jean Guilloud | Not known | 2,000,050 | |
1982 | Yoshiaki Tamura | MELCOM 900II | 2,097,144 | |
1982 | Yoshiaki Tamura and ياسوماسا كانادا | HITAC M-280H | 2.9 ساعة | 4,194,288 |
1982 | Yoshiaki Tamura and ياسوماسا كانادا | HITAC M-280H | 8,388,576 | |
1983 | ياسوماسا كانادا, Sayaka Yoshino and Yoshiaki Tamura | HITAC M-280H | 16,777,206 | |
October 1983 | Yasunori Ushiro and ياسوماسا كانادا | HITAC S-810/20 | 10,013,395 | |
October 1985 | Bill Gosper | Symbolics 3670 | 17,526,200 | |
يناير 1986 | ديفيد اتش بيلي | CRAY-2 | 29,360,111 | |
September 1986 | ياسوماسا كانادا، Yoshiaki Tamura | HITAC S-810/20 | 33,554,414 | |
October 1986 | ياسوماسا كانادا، Yoshiaki Tamura | HITAC S-810/20 | 67,108,839 | |
يناير 1987 | ياسوماسا كانادا، Yoshiaki Tamura، Yoshinobu Kubo and others | NEC SX-2 | 134,214,700 | |
يناير 1988 | ياسوماسا كانادا and Yoshiaki Tamura | HITAC S-820/80 | 201,326,551 | |
May 1989 | الأخوان شودنوفسكي | CRAY-2 & IBM 3090/VF | 480,000,000 | |
June 1989 | الأخوان شودنوفسكي | IBM 3090 | 535,339,270 | |
July 1989 | ياسوماسا كانادا and Yoshiaki Tamura | HITAC S-820/80 | 536,870,898 | |
August 1989 | الأخوان شودنوفسكي | IBM 3090 | 1,011,196,691 | |
19 November 1989 | ياسوماسا كانادا and Yoshiaki Tamura | HITAC S-820/80 | 1,073,740,799 | |
August 1991 | الأخوان شودنوفسكي | Homemade parallel computer (details unknown, not verified) [19] | 2,260,000,000 | |
18 May 1994 | الأخوان شودنوفسكي | New homemade parallel computer (details unknown, not verified) | 4,044,000,000 | |
26 June 1995 | ياسوماسا كانادا and Daisuke Takahashi | HITAC S-3800/480 (dual CPU) [20] | 3,221,220,000 | |
1995 | سيمون بلوف | Finds a صيغة بايلي-بورفاين-بلوف that allows the nth hexadecimal digit of pi to be calculated without calculating the preceding digits. | ||
28 August 1995 | ياسوماسا كانادا and Daisuke Takahashi | HITAC S-3800/480 (dual CPU) [21] | 4,294,960,000 | |
11 October 1995 | ياسوماسا كانادا and Daisuke Takahashi | HITAC S-3800/480 (dual CPU) [22] | 6,442,450,000 | |
6 July 1997 | ياسوماسا كانادا and Daisuke Takahashi | HITACHI SR2201 (1024 CPU) [23] | 51,539,600,000 | |
5 April 1999 | ياسوماسا كانادا and Daisuke Takahashi | HITACHI SR8000 (64 of 128 nodes) [24] | 68,719,470,000 | |
20 September 1999 | ياسوماسا كانادا and Daisuke Takahashi | HITACHI SR8000/MPP (128 nodes) [25] | 206,158,430,000 | |
24 November 2002 | ياسوماسا كانادا & 9 man team | HITACHI SR8000/MPP (64 nodes), Department of Information Science at the جامعة طوكيو in طوكيو، اليابان [26] | 600 ساعة | 1,241,100,000,000 |
29 April 2009 | Daisuke Takahashi et al. | T2K Open Supercomputer (640 nodes), single node speed is 147.2 فلوبس, computer memory is 13.5 تيرابايت، خوارزمية غاوس-ليجاندر , Center for Computational Sciences at the جامعة تسوكوبا in تسوكوبا، اليابان[27] | 29.09 ساعة | 2,576,980,377,524 |
متى ؟ | من ؟ | كيف ؟ | مدة الحساب | Decimal places (رقم عالميs in bold) |
---|---|---|---|---|
All records from Dec 2009 onwards are calculated on home computers with commercially available parts. | ||||
31 دسمبر 2009 | فابريس بيلارد |
|
131 days | 2,699,999,990,000 |
2 August 2010 | Shigeru Kondo[30] |
|
90 days | 5,000,000,000,000 |
17 October 2011 | Shigeru Kondo[33] |
|
371 days | 10,000,000,000,050 |
28 دسمبر 2013 | Shigeru Kondo[34] |
|
94 days | 12,100,000,000,050 |
8 October 2014 | "houkouonchi"[31] |
|
208 days | 13,300,000,000,000 |
11 November 2016 | Peter Trueb[35][36] |
|
105 days | 22,459,157,718,361[38] |
مراجع
- David H. Bailey, Jonathan M. Borwein, Peter B. Borwein & Simon Plouffe (1997). "The quest for pi" (PDF). Mathematical Intelligencer. ج. 19 ع. 1: 50–57. مؤرشف من الأصل (PDF) في 2019-04-03.
- https://web.archive.org/web/20170205201450/http://www.math.rutgers.edu/~cherlin/History/Papers2000/wilson.html. مؤرشف من الأصل في 2017-02-05.
{{استشهاد ويب}}
: الوسيط|title=
غير موجود أو فارغ (مساعدة) - Ravi P. Agarwal, Hans Agarwal & Syamal K. Sen (2013). "Birth, growth and computation of pi to ten trillion digits". Advances in Difference Equations. ج. 2013: 100. DOI:10.1186/1687-1847-2013-100. مؤرشف من الأصل في 2019-04-19.
{{استشهاد بدورية محكمة}}
: صيانة الاستشهاد: دوي مجاني غير معلم (link) - Mathematics in India - Kim Plofker - Google Books نسخة محفوظة 3 أغسطس 2020 على موقع واي باك مشين.
- Bag، A. K. (1980). "Indian Literature on Mathematics During 1400–1800 A.D." (PDF). Indian Journal of History of Science. ج. 15 ع. 1: 86. مؤرشف من الأصل (PDF) في 2012-03-09.
π ≈ 2,827,433,388,233/9×10−11 = 3.14159 26535 92222…, good to 10 decimal places.
- approximated 2π to 9 sexagesimal digits. Al-Kashi, author: Adolf P. Youschkevitch, chief editor: Boris A. Rosenfeld, p. 256 O'Connor، John J.؛ Robertson، Edmund F.، "Ghiyath al-Din Jamshid Mas'ud al-Kashi"، تاريخ ماكتوتور لأرشيف الرياضيات. Azarian, Mohammad K. (2010), "al-Risāla al-muhītīyya: A Summary", Missouri Journal of Mathematical Sciences 22 (2): 64–85.
- Viète, François (1579). Canon mathematicus seu ad triangula : cum adpendicibus (باللاتينية). Archived from the original on 2017-08-14.
- Romanus, Adrianus (1593). Ideae mathematicae pars prima, sive methodus polygonorum (باللاتينية). Archived from the original on 2020-01-03.
- Grienbergerus, Christophorus (1630). Elementa Trigonometrica (PDF) (باللاتينية). Archived from the original (PDF) on 2014-02-01.
- Hobson، Ernest William (1913). "Squaring the Circle": a History of the Problem. ص. 27. مؤرشف من الأصل (PDF) في 2016-03-10.
- Yoshio، Mikami؛ Eugene Smith، David (أبريل 2004) [يناير 1914]. A History of Japanese Mathematics (ط. paperback). Dover Publications. ISBN:0-486-43482-6. مؤرشف من الأصل في 2019-02-22.
- Lopez-Ortiz، Alex (20 فبراير 1998). "Indiana Bill sets value of Pi to 3". the news.answers WWW archive. Department of Information and Computing Sciences, Utrecht University. مؤرشف من الأصل في 2007-04-06. اطلع عليه بتاريخ 2009-02-01.
- G. Reitwiesner, "An ENIAC determination of Pi and e to more than 2000 decimal places," MTAC, v. 4, 1950, pp. 11–15"
- S. C, Nicholson & J. Jeenel, "Some comments on a NORC computation of x," MTAC, v. 9, 1955, pp. 162–164
- G. E. Felton, "Electronic computers and mathematicians," Abbreviated Proceedings of the Oxford Mathematical Conference for Schoolteachers and Industrialists at Trinity College, Oxford, April 8–18, 1957, pp. 12–17, footnote pp. 12–53. This published result is correct to only 7480D, as was established by Felton in a second calculation, using formula (5), completed in 1958 but apparently unpublished. For a detailed account of calculations of x see J. W. Wrench, Jr., "The evolution of extended decimal approximations to x," The Mathematics Teacher, v. 53, 1960, pp. 644–650
- F. Genuys, "Dix milles decimales de x," Chiffres, v. 1, 1958, pp. 17–22.
- This unpublished value of x to 16167D was computed on an IBM 704 system at the Commissariat à l'Energie Atomique in Paris, by means of the program of Genuys
- "Calculation of Pi to 100,000 Decimals" in the journal Mathematics of Computation, vol 16 (1962), issue 77, pages 76–99. نسخة محفوظة 27 أغسطس 2017 على موقع واي باك مشين.
- Bigger slices of Pi (determination of the numerical value of pi reaches 2.16 billion decimal digits) Science News 24 August 1991 http://www.encyclopedia.com/doc/1G1-11235156.html نسخة محفوظة 2020-08-15 على موقع واي باك مشين.
- ftp://pi.super-computing.org/README.our_last_record_3b%5Bوصلة+مكسورة%5D
- ftp://pi.super-computing.org/README.our_last_record_4b%5Bوصلة+مكسورة%5D
- ftp://pi.super-computing.org/README.our_last_record_6b%5Bوصلة+مكسورة%5D
- ftp://pi.super-computing.org/README.our_last_record_51b%5Bوصلة+مكسورة%5D
- ftp://pi.super-computing.org/README.our_last_record_68b%5Bوصلة+مكسورة%5D
- ftp://pi.super-computing.org/README.our_latest_record_206b%5Bوصلة+مكسورة%5D
- "super-computing.org - super computing Resources and Information". مؤرشف من الأصل في 2019-06-08. اطلع عليه بتاريخ 2021-04-02.
- https://web.archive.org/web/20161113224051/http://www.hpcs.is.tsukuba.ac.jp/~daisuke/pi.html. مؤرشف من الأصل في 2016-11-13.
{{استشهاد ويب}}
: الوسيط|title=
غير موجود أو فارغ (مساعدة) - "Fabrice Bellard's Home Page". bellard.org. مؤرشف من الأصل في 2019-05-05. اطلع عليه بتاريخ 2015-08-28.
- (PDF) https://web.archive.org/web/20191001032714/https://bellard.org/pi/pi2700e9/pipcrecord.pdf. مؤرشف من الأصل (PDF) في 2019-10-01.
{{استشهاد ويب}}
: الوسيط|title=
غير موجود أو فارغ (مساعدة) - "PI-world". calico.jp. مؤرشف من الأصل في 2016-11-27. اطلع عليه بتاريخ 2015-08-28.
- "y-cruncher – A Multi-Threaded Pi Program". numberworld.org. مؤرشف من الأصل في 2019-04-08. اطلع عليه بتاريخ 2015-08-28.
- "Pi – 5 Trillion Digits". numberworld.org. مؤرشف من الأصل في 2018-10-25. اطلع عليه بتاريخ 2015-08-28.
- "Pi – 10 Trillion Digits". numberworld.org. مؤرشف من الأصل في 2018-10-01. اطلع عليه بتاريخ 2015-08-28.
- "Pi – 12.1 Trillion Digits". numberworld.org. مؤرشف من الأصل في 2018-10-01. اطلع عليه بتاريخ 2015-08-28.
- "pi2e". pi2e.ch. مؤرشف من الأصل في 2019-02-26. اطلع عليه بتاريخ 2016-11-15.
- "y-cruncher – A Multi-Threaded Pi Program". numberworld.org. مؤرشف من الأصل في 2019-04-08. اطلع عليه بتاريخ 2016-11-15.
- "Hexadecimal Digits are Correct! – pi2e trillion digits of pi". pi2e.ch. مؤرشف من الأصل في 2016-11-16. اطلع عليه بتاريخ 2016-11-15.
- 22,459,157,718,361 is πe × 1012 rounded down.
انظر أيضًا
جزء من سلسلة مقالات حول |
الثابت الرياضي π |
---|
|
- بوابة التاريخ
- بوابة تاريخ العلوم
- بوابة رياضيات
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.