Iste articlo ye en proceso de cambio enta la ortografía oficial de Biquipedia (la Ortografía de l'aragonés de l'Academia Aragonesa d'a Luenga). Puez aduyar a completar este proceso revisando l'articlo, fendo-ie los cambios ortograficos necesarios y sacando dimpués ista plantilla. |
Sistema de numeros en matematicas |
Conchuntos de numeros |
Numeros destacables |
Numeros con propiedatz destacables |
Primers , abundants, amigos, compuestos, defectivos, perfectos, sociables, alchebraicos, transcendents |
Estensions d'os numeros complexos |
|
Numeros especials |
|
Altros numeros importants |
Sequencia d'enters |
Sistemas de numeración |
Arabe, armenia, atica (griega), babilonica, cirilica, echipciana, etrusca, griega, hebrea, india, chonica (griega), chaponesa, khmer, maya, romana, tailandesa, chinesa.
|
A numeración arabica ye a representación d'os numeros mas emplegada hue. Se li diz «arabica» porque estioron os arabes os que la introducioron en Europa, pero s'inventó en a India.
Ye un sistema de numeración posicional y decimal, ye decir, basau en o numero 10; consta de 10 numeros u cifras ta representar cadagún d'os 10 dichitos. A valura d'o dichito varía seguntes a posición que ocupa adintro d'o numero, ya que se multiplica él mesmo por a base 10 elevada a la posición d'o dichito. Asinas, o primer dichito (prencipiando por a dreita) tien a valura que representa o suyo símbol multiplicau por (=1); o dichito siguient tien a valura que representa o suyo símbol multiplicada por (=10); y asinas succesivament. Se puet definir una formula matematica ta un numero de n dichitos d'as siguient traza:
en do ye o dichito situau en a posición (prencipiando por a dreita).
Eixemplos:
Variants
O sistema arabico actual se representa de traza diferent seguntes o sistema d'escritura.
Europeu (alfabeto latino, y sistema chaponés rōmaji) |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
Arabico-indico (alifato arabico) |
٠ | ١ | ٢ | ٣ | ٤ | ٥ | ٦ | ٧ | ٨ | ٩ |
Arabico-indico oriental (alifato persa u urdú) |
۰ | ۱ | ۲ | ۳ | ۴ | ۵ | ۶ | ۷ | ۸ | ۹ |
Devanagari (Hindi) |
० | १ | २ | ३ | ४ | ५ | ६ | ७ | ८ | ९ |
Tamil | ௦ | ௧ | ௨ | ௩ | ௪ | ௫ | ௬ | ௭ | ௮ | ௯ |
Adintro d'o sistema europeu tamién i hai chicotas diferencias. Dende fa poco, o zero ha pasau d'escribir-se como un cerclo u una elipse, «0», a representar-se a vegadas con una barra (pareixita a la letra danesa Ø), ta diferenciar-lo d'a letra «O». En Europa, o numero siet (7) gosa escribir-se con una barra horizontal ta diferenciar-lo d'o numero uno (1).
Historia
A hipotesi mas acceptada ye que a numeración arabica tenió o suyo orichen en a India, entre o 400 aC y o 400 dC. De feito, entre o mundo islamico istos numeros gosan conoixer-sen con o nombre de «numeros indios» (أرقام هندية, arqam hindiiiah). Tamién ye posible que esen naixiu en a China, dadas as semellanzas con o sistema chino Hua Ma, que tamién ye posicional y de base 10.
Os símbols de l'1 dica o 9 d'o sistema Brahmi son un paso intermeyo enta o sistema arabico mas moderno.
O sistema apareix descrito en una obra d'o matematico persa Abu Abdullah Muhammad bin Musa al-Khwarizmi, escrita por as envueltas de l'anyo 825, y traducida en o sieglo XII con o títol Algoritmi de numero Indorum (algoritmi (algorismo), provién d'o nombre d'o debantdito matematico al-Jwarizmi).
Unatro matematico, Al-Kindi, difundió o sistema indio de numeración por l'Orient Meyo con os suyos cuatro volumens de Ketab fi Isti'mal al-'Adad al-Hindi (Guia de numeración india), de l'anyo 830.
A primer inscripción reconoixida d'o numero zero, representau por un punto u una boleta, data d'o sieglo IX y se localiza en Gwalior. Una vegada adoptau por os arabes, recibió o nombre de as-saffr (أَلصِّفْر), d'an que derivó cifra. Manimenos, a existencia d'o zero se remonta a muitos sieglos antes, y pareix que o suyo orichen tamién se troba en a India.
Enta part de l'anyo 952 o sistema arabico adopta as fraccions, tal como se leye en un tractau d'o matematico sirio Abu'l-Hasan al-Uqlidisi.
Ya en a epoca de l'Al-Andalus, o sistema arabico y l'abaco dentroron en Europa, que encara feba servir o sistema de numeración romana. A primer mención a Occident apareix en o Codex Vigilianus (976). O 984, Gerbert d'Auriac demanda a l'astronomo barcelonín Sunifred Llobet (lupitus), una traducción d'un tractau d'astronomía en arabe, o Sententiae astrolabii, traducción que incluyó o sistema de numeración.
Anyos dimpués, Fibonacci, matematico italiano que estudió en Bugia (hue en Alcheria), contrebuyó a la difusión d'o sistema por Europa, gracias a la suya obra Liber Abaci (publicau en 1202). No ye dica o sieglo XV cuan o suyo uso prencipia a normalizar-se por toda Europa.
- Tabla con «apices» en a Edat Meya
- Tabla de numerals